Visual localization based on images: methods, challenges, and trends (2019–2025)

  • Іван Ільницький
  • Петро Пукач
Keywords: visual localization, image-based localization, 6DoF camera position, hybrid methods, imageretrieval, local features, position regression, neural radial fields, SLAM, deep learning.

Abstract

The article provides an overview of the domain of image-based localization systems, focusing on key methods, challenges, and current trends in development for the period 2019–2025. It considers the classification of approaches to visual localization, including traditional approaches based on local features and 3D structures, approaches based on image search (visual recognition of terrain), as well as the latest deep learning methods. It analyzes datasets, key industry challenges, and promising areas for further research.

References

Arandjelović, R., P. Gronat, A. Torii, T. Pajdla, and J. Sivic. 2016. "NetVLAD: CNN Architecture for Weakly Supervised Place Recognition." Proc. IEEE Conferenceon Computer Visionand Pattern Recognition (CVPR), 5297-307. https://arxiv.org/abs/1511.07247 https://doi.org/10.1109/CVPR.2016.572

Brachmann, E., A. Krull, S. Nowozin, etal. 2017. "DSAC - Differentiable RANSAC for Camera Localization." Proc. IEEE Conferenceon Computer Visionand Pattern Recognition (CVPR), 668-76. https://arxiv.org/abs/1611.05705 https://doi.org/10.1109/CVPR.2017.267

Brachmann, E., and C. Rother. 2019a. "Expert Sample Consensus Appliedto Camera Re-Localization." Proc. IEEE/CVF International Conferenceon Computer Vision (ICCV), 7525-34.https://arxiv.org/abs/1908.02484

Brachmann, E., and C. Rother. 2019b. "Neural-Guided RANSAC: Learning Whereto Sample Model Hypotheses." Proc. IEEE/CVF International Conferenceon Computer Vision (ICCV).https://arxiv.org/abs/1905.04132 https://doi.org/10.1109/ICCV.2019.00442

Chen, C., B. Wang, C. X. Lu, N. Trigoni, andA. Markham. 2024. "Deep Learning for Visual Localization and Mapping: A Survey." IEEE Transactionson Neural Networks and Learning Systems, aheadof print. https://arxiv.org/abs/2308.14039

Chen, Y. etal. 2022. Transformer Fusion: Point Cloud Guided Global Feature Fusionfor Image-Based Localization. https://arxiv.org/abs/2203.10722

DeTone, D., T. Malisiewicz, and A. Rabinovich. 2018. "SuperPoint: Self-Supervised Interest Point Detection and Description." Proc. IEEE/CVF Conferenceon Computer Visionand Pattern Recognition Workshops (CVPRW). https://arxiv.org/abs/1712.07629 https://doi.org/10.1109/CVPRW.2018.00060

Garg, S. etal. 2019. Semantic-geometric visual place recognition: a new perspective forrecon ciling opposing views geometric_visual_place_recognition_a_new_perspective_for_reconciling_opposing_views

https://doi.org/10.1177/0278364919839761

https://www.researchgate.net/publication/332280264_Semantic-

Kendall, A., M. Grimes, and R. Cipolla. 2015. "PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization." Proc. IEEE International Conferenceon Computer Vision (ICCV). https://arxiv.org/abs/1505.07427

https://doi.org/10.1109/ICCV.2015.336

Lin, Yen-Chenetal. 2021. iNeRF: Inverting Neural Radiance Fields for Pose Estimation. https://arxiv.org/abs/2012.05877 https://doi.org/10.1109/IROS51168.2021.9636708

Maddern, W., G. Pascoe, C. Linegar, and P. Newman. 2017. "1 Year, 1000 Km: The Oxford Robot Car Dataset." International Journal of Robotics Research (IJRR). https://ora.ox.ac.uk/objects/uuid%3Ac5266bad-e0f8-49f1-918e-1602ef935990

https://doi.org/10.1177/0278364916679498

Mapillary Research. 2021. Visual Place Recognition for Autonomous Driving. https://research.mapillary.com

Noh, H., A. Araujo, J. Sim, T. Weyand, and B. Han. 2017. "Large-Scale Image Retrieval with Attentive Deep Local Features." Proc. IEEE International Conferenceon Computer Vision (ICCV). https://arxiv.org/abs/1612.06321 https://doi.org/10.1109/ICCV.2017.374

Sarlin, P.-E., C. Cadena, R. Siegwart, and M. Dymczyk. 2019. "From Coarse to Fine: Robust Hierarchical Localizationat Large Scale." Proc. IEEE/CVF Conferenceon Computer Visionand Pattern Recognition (CVPR), 12716-25. https://arxiv.org/abs/1812.03506

Sarlin, P.-E., D. DeTone, T. Malisiewicz, and A. Rabinovich. 2020. "Super Glue: Learning Feature Matching with Graph Neural Networks." Proc. IEEE/CVF Conferenceon Computer Vision and Pattern Recognition (CVPR), 4937-46. https://arxiv.org/abs/1911.11763 https://doi.org/10.1109/CVPR42600.2020.00499

Published
2025-12-26
How to Cite
Ільницький, І., & Пукач, П. (2025). Visual localization based on images: methods, challenges, and trends (2019–2025). PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (41), 5-14. https://doi.org/10.15407/fmmit2025.41.005