Strength analysis of a bimaterial with an internal crack and sliding interface contact
Abstract
For analyzing the stress-strain state of an infinite bimaterial composed of two half-spaces containing a circular internal crack under static tensile loading, a boundary-integral approach is considered. Smooth contact conditions with slip are imposed on the interface surface of the body. The problem is reduced to solving a two-dimensional boundary integral equation of the Newtonian potential type concerning the unknown crack opening displacement function on the defect surfaces. Using the obtained solutions, stress intensity factors for mode I are computed, and their dependencies on the stiffness ratio of the bimaterial components, the distance between the defect and interface, and on the angular coordinate of the crack contour point are analyzed
References
Ben-Romdhane M., El-Borgi S., Charfeddine M. An embedded crack in a functionally graded orthotropic coating bonded to a homogeneous substrate under a frictional Hertzian contact // International Journal of Solid and Structures, 2013. - 50. - P. 3898-3910. https://doi.org/10.1016/j.ijsolstr.2013.07.025
Xiao Sh., Yue Zh., Xiao H. Dual boundary element method for analyzing three-dimensional cracks in layered and graded halfspaces // Engineering Analysis with Boundary Elements, 2019. - 104. - P. 135-147. https://doi.org/10.1016/j.enganabound.2019.03.021
Хай М. В., Степанюк А. И. О взаимодействии трещин в кусочно-однородном теле // Прикладная механика, 1992. - 28, № 12. - С. 46-56.
Andrade H.C., Trevelyan J., Leonel E.D. Direct evaluation of stress intensity factors and T-stress for biomaterial interface cracks using the extended isogeometric boundary element method // Theoretical and Applied Fracture Mechanics, 2023. - 127. - P. 1-21. https://doi.org/10.1016/j.tafmec.2023.104091
Chai H., Lv J., Bao Y. Numerical solution of hypersingular integral equations for stress intensity factors of planar embedded interface cracks and their correlations with bimaterial parameters // International Journal of Solid and Structures, 2020. - 202. - P. 184-194. https://doi.org/10.1016/j.ijsolstr.2020.06.014
Gu Y., Lin J., Wang F. Fracture mechanics analysis of bimaterial interface cracks using an enriched method of fundamental solutions: theory and MATLAB code // Theoretical and Applied Fracture Mechanics, 2021. - 116. - P. 1-20. https://doi.org/10.1016/j.tafmec.2021.103078
Golub M. V., Doroshenko O. V., Wilde M. V., Eremin A. A. Experimental validation of the applicability of effective spring boundary conditions for modeling damaged interfaces in laminate structures // Composite Structures, 2021. - 273. - P. 1-9. https://doi.org/10.1016/j.compstruct.2021.114141
Pasternak Ya. M., Sulym H. T., Vasylyshyn A. V., Yasniy O. P. Influence of interfacial layers of high thermal conductivity on the distribution of physicomechanical fields in two-component structures // Material Science, 2023. - № 6. - Р. 725-730. https://doi.org/10.1007/s11003-023-00722-1
Stankevych V. Z., Stankevych O. M. Acoustic emission in elastic bimaterial with crack under different contact conditions of interface plane // International Applied Mechanics, 2024. - 60, № 2. - Р. 203-211. https://doi.org/10.1007/s10778-024-01274-w
Zvizlo I. S., Stankevych N. V. Torsion crack in a piecewise homogeneous body with a thin layer at the interface // Materials Science, 2024. - № 60. - P. 232-239. https://doi.org/10.1007/s11003-025-00877-z
Сулим Г. Т., Піскозуб Й. З. Умови контактної взаємодії (огляд) // Математичні методи і фізико-механічні поля, 2004. - № 3. - С. 110-125.
Stankevich V. Z. Computation of certain double integrals those are characteristic of dynamic problems of the theory of cracks in a semi-infinite body // Journal of Mathematical Sciences, 1996. - 81, № 6. - P. 3048-3052. https://doi.org/10.1007/BF02362592
Copyright (c) 2025 Іван Звізло, Назар Станкевич (Автор)

This work is licensed under a Creative Commons Attribution 4.0 International License.