Differential-difference iterative domain decomposition algorithms for unilateral multibody contact problems of elasticity
Fìz.-mat. model. ìnf. tehnol. 2017, 25:125-140
Abstract
Implicit two-point differential-difference parallel iterative domain decomposition algorithms are proposed to solve the multibody contact problems of elasticity. A program implementation of these algorithms based on the finite element approximations is made for the case of plane contact problems. The influence of the iterative parameters on the convergence rate of presented algorithms is investigated. The numerical efficiency of different two-point and one-point iterative algorithms is compared.
References- Bartish, M. Ya., Shcherbyna, Yu. M. (1972). Pro odyn riznytsevyi metod rozviazuvannia neliniinykh opera- tornykh rivnian. Dop. AN URSR. Ser. A., 7, 579-582.
- Shakhno, S. M. (2006). Pro riznytsevyi metod z kvadratychnoiu zbizhnistiu dlia rozviazuvannia neliniinykh operatornykh rivnian. Mat. studii., 26(1), 105-110.
- Shakhno, S. M. (2009). Pro dvokrokovyi iteratsiinyi protses v uzahalnenykh umovakh Lipshytsia dlia podilenykh rizyts pershoho poriadku. Mat. metody ta fiz.-mekh. polia., 52(1), 59-66.
- Shakhno, S. M. (2009). On an iterative algorithm with superquadratic convergence for solving nonlinear operator equations. J. Comput. Appl. Math., 231, 222-235.
DOI https://doi.org/10.1016/j.cam.2009.02.010 - Shakhno, S. M., Yarmola, H. P. (2011). Dvotochkovyi metod dlia rozviazuvannia neliniinykh rivnian z nedyferentsiiovnym operatorom. Mat. studii, 36(2), 213-220.
- Shakhno, S. M., Melnyk, I. V., Yarmola, H. P. (2013). Analiz zbizhnosti kombinovanoho metodu dlia rozviazuvannia neliniinykh rivnian. Mat. metody ta fiz.-mekh. polia, 56(1), 31-39.
- Hernandez, M. A., Rubio, M. J. (2002). The secant method for nondifferentiable operators. Appl. Math. Lett., 15(4), 395-399.
DOI https://doi.org/10.1016/S0893-9659(01)00150-1 - Argyros, I. K. (2004). A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl., 298(2), 374-397.
DOI https://doi.org/10.1016/j.jmaa.2004.04.008 - Chen, X., Nashed, Z., Qi, L. (2000). Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal., 38, 1200-1216.
DOI https://doi.org/10.1137/S0036142999356719 - Ulbrich, M. (2003). Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim., 13(3), 805-842.
DOI https://doi.org/10.1137/S1052623400371569 - Hintermüller, M., Ito, K., Kunisch, K. (2003). The primal-dual active set strategy as semismooth Newton method. SIAM J. Optim., 13(3), 865-888.
DOI https://doi.org/10.1137/S1052623401383558 - Kikuchi, N., Oden, J. T. (1988). Contact Problem in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Philadelphia: SIAM.
DOI https://doi.org/10.1137/1.9781611970845 - Kravchuk, A. S. (1978). Postanovka zadachi o kontakte neskolkih deformiruemyh tel kak zadachi nelinejnogo programmirovaniya. PMM, 42(3), 467-473.
- Lions, Zh.-L. (1972). Nekotorye metody resheniya nelinejnyh kraevyh zadach. Moskva: Mir.
- Kuzmenko, V. I. (1979). O variacionnom podhode k teorii kontaktnyh zadach dlya nelinejnouprugih sloistyh tel. PMM, 43(5), 893-901.
- Prokopyshyn, I. I. (2010). Skhemy dekompozytsii oblasti na osnovi metodu shtrafu dlia zadach kontaktu pruzhnykh til. (Dysertatsiia na zdobuttia naukovoho stupenia kandydata fiz.-mat. nauk). Lviv.
- Dyyak, I. I., Prokopyshyn, I. I., Prokopyshyn, I. A. (2012). Penalty Robin-Robin domain decomposition methods for unilateral multibody contact problems of elasticity: Convergence results.
DOI https://doi.org/10.1007/978-3-642-35275-1_77 - Prokopyshyn, I. I. (2012). Metody dekompozytsii oblasti dlia zadach pro odnostoronnii kontakt neliniino pruzhnykh til. Fiz.-mat. modeliuvannia ta inform. tekhnolohii, 15, 75-87.
- Martyniak, R. M., Prokopyshyn, I. A., Prokopyshyn, I. I. (2013). Kontakt pruzhnykh til za naiavnosti neliniinykh vinklerivskykh poverkhnevykh shariv. Mat. metody ta fiz.-mekh. polia, 56(3), 43-56.
- Prokopyshyn, I. I., Martyniak, R. M. (2011). Chyslove doslidzhennia kontaktnoi vzaiemodii dvokh til z vyimkoiu metodom dekompozytsii oblasti. Problemy obchysliuvalnoi mekhaniky i mitsnosti konstruktsii, 16, 240-251.
- Prokopyshyn, I. I., Dyyak, I. I., Martynyak, R. M., Prokopyshyn, I. A. (2013). Penalty Robin-Robin domain decomposition schemes for contact problems of nonlinear elasticity. Lect. Notes Comput. Sci. Eng., 91, 647-654.
DOI https://doi.org/10.1007/978-3-642-35275-1_77 - Prokopyshyn, I. I. (2015). Metody dekompozytsii oblasti dlia zadachi pro statychnu rivnovahu systemy pruzhnykh til, ziednanykh cherez tonki neliniini prosharky. Fiz.-mat. modeliuvannia ta inform. tekhnolohii, 21, 173-185.
- Shvets, R. M., Martynyak, R. M., Kryshtafovych, A. A. (1996). Discontinuous contact of an anisotropic halfplane and a rigid base with disturbed surface. Int. J. Engng. Sci., 34(2), 183-200.
DOI https://doi.org/10.1016/0020-7225(95)00091-7
Copyright (c) 2018 Ihor Prokopyshyn, Stepan Shakhno

This work is licensed under a Creative Commons Attribution 4.0 International License.