Investigation of an equilibrium state of water and two-component gas mixture of dry air and water vapor at the separation surface of phases in the conditions of phase transition Part I

Fìz.-mat. model. ìnf. tehnol. 2017, 25:51-71

  • Taras Holubets Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
Keywords: phase transformation, quasiclassical approximation, state equation, two-component gas mixture, weak solutions, surface tension, probability distribution, informational entropy

Abstract

In this part of the publication from the point of view the macroscopically and microscopically description of the properties of phase transition the conditions of stationary thermodynamic state (equilibrium) at the separation surface between the liquid and gas phases under uniform heating or cooling from the side of the thermal reservoir (thermostat) are reviewed and formulated. The basic methods of investigations of the equilibrium state of a two-component gas mixture (dry air and water vapor) in contact with a liquid phase under conditions of phase transformation are described. In the framework of the quasi-classical approximation, the macroscopic equations of the balance of pressures at the interfacial phase surface are defined, according to which the effective molar characteristics of the gas (binary) mixture in the conditions of fluctuation mixing with the ideal liquid into the superfacial layer are determined under certain diffusion approximations. According to macroscopic (mechanical) and microscopic (probabilistic) considerations, an equation of state of a nonideal gas mixture in the case of evaporation or condensation during phase transition under stationary conditions is obtained.

References
  1. Reid, R. C., Prausnitz, J. M., Poling, B. E. (1987). The properties of gases&liquids. New York: McGraw-Hill.
  2. Shtrauf, E. F. (1949). Molekulyarnaya fizika. Leningrad-Moskva: Gos. izd. tehn.-teor. lit.
  3. Rowlinson, J. S., Widom, B. (1982). Molecular theory of Capillarity. Mineola-New York.: Dover publications.
  4. Bird, R. B., Stewart, W. E., Lightfoot, E. N. (2002). Transport Phenomena. New York-Toronto: John Wiley & Sons.
  5. Jintao, Z., Buxuan, W., Xiaofeng, P. (2001). The effect of capillary pressure for concave liquid — vapor interface on interfacial evaporation. Scien. In China (Series E), 44(6), 654-660.
  6. Wayner, P. C. (1979). Effect of Thin Film Heat Transfer on Meniscus Profile and Capilary Pressure. AIAA Journal, 17(7), 772-776.
    DOI https://doi.org/10.2514/3.61217
  7. Kim, I.Y., Wayner, P.C. (1996). Shape of an Evaporating Completely Wetting Extended Meniscus. Journal of Thermophysics and Heat Transfer, 10(2), 320-325.
    DOI https://doi.org/10.2514/3.790
  8. Kandlikar, S. G. (1999). Handbook of phase change: Boiling and Condensation. Philadelphia-London: Taylor&Francis.
  9. Kalyuzhnyi, Yu.V., Protsykevytch, I.A., Cummings, P.I. (2007). Thermodynamic properties and liquid-gas phase diagram of the dipolar hard-sphere fluid. Europhys. Letters Association, 80(5), 56002(1-6).
    DOI https://doi.org/10.1209/0295-5075/80/56002
  10. Holovko, M., Shmotolokha, V., Patsahan, T. (2014). Hard convex body fluids in random porous media: Scaled particle theory. Journ. of Mol. liquid, 189(30), 115-133.
    DOI https://doi.org/10.1016/j.molliq.2013.05.030
  11. Chaikin, P. M., Lubensky, T. C. (2000). Principles of condensed matter physics. Cambridge: Cambridge University Press.
  12. Morrow, N. R. (1970). Physics and Thermodynamics of Capillary Action in Porous Media. Industrial and Engineering Chemistry, 62(6), 32-56.
  13. Hatsopoulos, G. N., Keenan, J. H. (1965). Principles of General Thermodynamics. New York-London-Sydney: John Wiley & Sons.
  14. Denbing, K. (1971). The Principles of Chemical Equilibrium. New York: Cambridge University Press.
  15. Radchenko, I. V. (1959). Molekuliarna fizyka. Kharkiv: Vyd. Kharkivskoho derzh. universytetu.
  16. Braut, R. (1967). Fazovye perehody. Moskva: Mir, 1967.
  17. Patashinskij, A. Z., Pokrovskij, V.L. (1982). Fluktuacionnaya teoriya fazovyh perehodov. Moskva: Nauka.
  18. Zubarev, D. N. (1971). Neravnovesnaya statisticheskaya termodinamika. M.: Nauka.
  19. Beck, С., Schlogl, I. (1997). Thermodynamic of chaotic systems. New York: Cambridge University Press.
  20. Holubets, T. V. (2016). Ymovirnistni metody opysu rivnovazhnoho termodynamichnoho stanu dvokhkomponentnykh vzaiemodiiuchykh sumishei. Fiz.-mat. mod. i inf. tekhnolohii, 23, 61-79.
  21. Glasstone, S. (1947). Thermodynamics for Chemists. New York: D. Van Nostrand Company.
  22. Maxwell, J. C. (1867). On the dynamical theory of gases. London Phil. Trans. Roy. Soc., 157, 49-88.
Published
2018-11-19
How to Cite
Holubets, T. (2018). Investigation of an equilibrium state of water and two-component gas mixture of dry air and water vapor at the separation surface of phases in the conditions of phase transition Part I. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (25), 51-71. https://doi.org/10.15407/fmmit2017.25.051