Modeling and investigating of the influence of surface roughness on the strength of electrically conductive fiber

Fìz.-mat. model. ìnf. tehnol. 2021, 31:51-59

  • Taras Nahirnyj Center of Mathematical Modelling of IAPMM, Zielona Góra University, 4 Prof. Shafran St., Poland
  • Kostiantyn Tchervinka Ivan Franko National University of Lviv 1, Universytetska St., Lviv, 79000, Ukraine
Keywords: local inhomogeneity, superficial phenomena, dimensional effects, electrically conductive nonferromagnetic solid, thin fibers

Abstract

In the framework of the model of locally inhomogeneous electrically conductive nonferromagnetic solid, the near-surface inhomogeneity in a solid cylinder is investigated. It is shown that such inhomogeneity is characterized by three characteristic sizes associated with the structural inhomogeneity of the material, the roughness of the real surface and the electronic subsystem. The charge distribution features a double electric layer. The size effect of fiber strength and its dependence on geometric inhomogeneity parameters of the surface are studied.

References
  1. Parthasarathy, T. A., Rao, S. I., Dimiduk, D. M., Uchic, M. D., Trinkle, D. R. (2007). Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scripta Materialia, 56(4), 313–316.
    DOI doi.org/10.1016/j.scriptamat.2006.09.016
  2. Zhang, W., Wang, T., Chen, X. (2008). Effect of surface stress on the asymmetric yield strength of nanowires. Journal of Applied Physics, 103(12), 123527.
    DOI doi.org/10.1063/1.2946447
  3. Takeo, K., Aoki, Y., Osada, T., Nakao, W., Ozaki, S. (2019). Finite Element Analysis of the Size Effect on Ceramic Strength. Materials, 12(18), 2885.
    DOI doi.org/10.3390/ma12182885
  4. Barbat, G. B., Cervera, M., Chiumenti, M., Espinoza, E. (2020). Structural size effect: Experimental, theoretical and accurate computational assessment. Engineering Structures, 213, 110555.
    DOI doi.org/10.1016/j.engstruct.2020.110555
  5. Nahirnyi, T. S., Chervinka, K. A. (2018). Osnovy mekhaniky lokalno neodnoridnykh deformivnykh tverdykh til. Lviv: Rastr-7.
  6. Nahirnyj, T., Tchervinka, K. (2015). Mathematical modeling of structural and near-surface non-homogeneites in thermoelastic thin films. Int.J.Eng.Sci., 91, 49–62.
    DOI doi.org/10.1016/j.ijengsci.2015.02.001
  7. Nahirnyj, T., Tchervinka, K. (2020). Functional kinetic equations in mathematical modeling of coupled processes in solids. Continuum Mechanics and Thermodynamics, 32, 1727-1743.
    DOI doi.org/10.1007/s00161-020-00877-1
  8. Tamm, I. E. (1976). Osnovyi teorii elektrichestva. M., «Nauka».
  9. Panasyuk, V. V., Andreykiv, A. E., Parton, V. S. (1988). Osnovyi mehaniki razrusheniya materialov. Mehanika razrusheniya i prochnost materialov: Sprav. posobie. K.: Nauk. dumka.
  10. Nahirnyi, T. S., Chervinka, K. A. (2014). Osnovy mekhaniky lokalno neodnoridnykh pruzhnykh til. Osnovy nanomekhaniky II. Lviv: Rastr-7.
Published
2021-07-15
How to Cite
Nahirnyj, T., & Tchervinka, K. (2021). Modeling and investigating of the influence of surface roughness on the strength of electrically conductive fiber. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (31), 51-59. https://doi.org/10.15407/fmmit2021.31.051