Domain decomposition algorithms for problems of thermomechanical contact between several elastic bodies
Fìz.-mat. model. ìnf. tehnol. 2017, 26:63-82
Abstract
We consider a thermoelastic multibody contact problem for finite bodies with unilateral mechanical and imperfect thermal contact conditions. Using a penalty method, we obtain a weak formulation of this problem in the form of a system of linear and nonlinear variational equations in Hilbert space. To solve this variational system, we propose a class of iterative Robin type
domain decomposition algorithms. In each iterative step of these algorithms one have to solve two linear variational equations for each of the bodies, which correspond to heat conduction problem with Newton boundary conditions on the possible contact areas and linear elasticity problem with additional volume forces and Robin boundary conditions respectively. The program implementation of proposed algorithms is made for plane thermoelastic contact problems with the use of linear and quadratic finite element approximations on triangles. The numerical analysis is
performed for one-body and two-body thermoelastic contact problems.
- Johansson, L., Klarbring, A. (1993). Thermoelastic frictional contact problems: Modelling, finite element approximation and numerical realization. Comput. Methods Appl. Mech. Engrg., 105, 181-210.
- Zavarise, G., Wriggers, P., Schrefler, B. A. (1995). On augmented Lagrangian algorithms for thermomechanical contact problems with friction. Int. J. Numer. Methods Engrg.,38, 2929-2949.
DOI https://doi.org/10.1002/nme.1620381706 - Oancea, V. G., Laursen, T. A. (1997). A finite element formulation of thermomechanical rate-dependent frictional sliding. Int. J. Numer. Methods Engrg., 40, 4275-4311.
- Xing, H. L., Makinouchi, A. (2002). Three dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy. Comput. Methods Appl. Mech. Engrg., 191, 4193-4214.
DOI https://doi.org/10.1016/S0045-7825(02)00372-9 - Skorodynskyi, I. S., Lazko, V. A. (1996). Kvazistatychna termofryktsiina zadacha pry naiavnosti uzahalnenoho liniino-dysypatyvnoho mekhanizmu mizhfaznoho prokovzuvannia. Visn. derzh. un-tu «Lviv. politekhnika». Ser. Prykl. matematyka, 209, 144-154.
- Skorodynskyi, I. S. (2000). Iteratsiini alhorytmy dlia rozviazuvannia kvazistatychnoi odnobichnoi termofryktsiinoi zadachi. Fiz.-khim. mekhanika materialiv, 36(6), 65-71.
- Martyniak, R. M., Chumak, K. A. (2008). Termopruzhnyi kontakt pivprostoriv, shcho maiut odnakovi termichni dystortyvnosti, za naiavnosti teplopronyknoho mizhpoverkhnevoho prosvitu. Mat. metody ta fiz.-mekh. polia, 51(3), 163-175.
- Martynyak, R., Chumak, K. (2012). Effect of heat-conductive filler of interface gap on thermoelastic contact of solids. Int. J. Heat Mass Transfer, 55(4), 1170-1178.
DOI https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.053 - Chumak, K. A, Martynyak, R. M. (2012). Thermal rectification between two thermoelastic solids with a periodic array of rough zones at the interface. Int. J. Heat Mass Transfer, 55(21-22), 5603-5608.
- Bobilyov, A. A. (2010). Zadacha o kontaktnom vzaimodejstvii vesomogo uprugogo tela s odnosto- ronnim zhestkim nagretym osnovaniem. Problemi obchislyuvalnoyi mehaniki i micnosti konstrukcij, 14, 64-71.
- Bobilyov, A. A. (2010). Zadacha o szhatii uprugoj dvuhslojnoj polosy zhestkimi nagretymi vypuklymi shtampami. Visn. Dnipropetr. un-tu. Ser. Mekhanika, 14(2), 15-22.
- Bobylov, O. O., Loboda, V. V. (2013). Osesymetrychna kontaktna zadacha termopruzhnosti dlia trysharovoho pruzhnoho tsylindra z zhorstkym nerivnomirno nahritym serdechnykom. Mat. metody ta fiz.-mekh. polia, 56(4), 149-157.
- Prokopyshyn, I. I. (2008). Paralelni skhemy metodu dekompozytsii oblasti dlia kontaktnykh zadach teorii pruzhnosti bez tertia. Visnyk Lvivskoho universytetu. Ser. prykl. matematyka ta informatyka, 14, 123-133.
- Prokopyshyn I. I. (2010). Skhemy dekompozytsii oblasti na osnovi metodu shtrafu dlia zadach kontaktu pruzhnykh til. (Dysertatsiia na zdobuttia naukovoho stupenia kandydata fiz.-mat. nauk). Lviv.
- Dyyak, I. I., Prokopyshyn, I. I., Prokopyshyn, I. A. (2012). Penalty Robin-Robin domain decomposition methods for unilateral multibody contact problems of elasticity: Convergence results.
- Prokopyshyn, I. I. (2012). Metody dekompozytsii oblasti dlia zadach pro odnostoronnii kontakt neliniino pruzhnykh til. Fiz.-mat. modeliuvannia ta inform. tekhnolohii, 15, 75-87.
- Prokopyshyn, I. I., Dyiak, I. I., Martyniak, R. M. (2013). Chyslove doslidzhennia zadach pro kontakt trokh pruzhnykh til metodamy dekompozytsii oblasti. Fiz.-khim. mekhanika materialiv, 49(1), 46-55.
- Martyniak, R. M., Prokopyshyn, I. A., Prokopyshyn, I. I. (2013). Kontakt pruzhnykh til za naiavnosti neliniinykh vinklerivskykh poverkhnevykh shariv. Mat. metody ta fiz.-mekh. polia, 56(3), 43-56.
- Prokopyshyn, I. I., Dyyak, I. I., Martynyak, R. M., Prokopyshyn, I. A. (2013). Penalty Robin-Robin domain decomposition schemes for contact problems of nonlinear elasticity. Lect. Notes Comput. Sci. Eng., 91, 647-654.
DOI https://doi.org/10.1007/978-3-642-35275-1_77 - Prokopyshyn, I. I. (2014). Skhemy dekompozytsii oblasti na osnovi metodu shtrafu dlia zadach pro ideal- nyi kontakt pruzhnykh til. Mat. metody ta fiz.-mekh. polia, 57(1), 41-56.
- Prokopyshyn, I. I., Dyyak, I. I., Martynyak, R. M., Prokopyshyn, I. A. (2014). Domain decomposition methods for problems of unilateral contact between elastic bodies with nonlinear Winkler covers. Lect. Notes Comput. Sci. Eng., 98, 739-748.
DOI https://doi.org/10.1007/978-3-319-05789-7_71 DOI - Prokopyshyn, I. I. (2015). Metody dekompozytsii oblasti dlia zadachi pro statychnu rivnovahu systemy pruzhnykh til, ziednanykh cherez tonki neliniini prosharky. Fiz.-mat. modeliuvannia ta inform. tekhnolohii, 21, 173-185.
- Kikuch, N., Oden, J. T. (1988). Contact Problem in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Philadelphia: SIAM.
- Kravchuk, A. S. (1978). Postanovka zadachi o kontakte neskolkih deformiruemyh tel kak zadachi nelinejnogo programmirovaniya. PMM, 42(3), 467-473.
- Lions, Zh.-L. (1972). Nekotorye metody resheniya nelinejnyh kraevyh zadach. Moskva: Mir.
- Kuzmenko, V. I. (1979). O variacionnom podhode k teorii kontaktnyh zadach dlya nelinejnouprugih sloistyh tel. PMM, 43(5), 893-901.
Copyright (c) 2017 Ігор Прокопишин (Автор)

This work is licensed under a Creative Commons Attribution 4.0 International License.