Modelling of phase transition and residual stresses in construction elements subjected to thermal loading

Fìz.-mat. model. ìnf. tehnol. 2017, 26:17-30

  • Oleksandr Hachkevych Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
  • Bohdan Drobenko Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
  • Volodymyr Astashkin Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
  • Stepan Budz Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
  • Ihor Budz Lviv Polytechnic National University
  • Ihor Chupyk Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
Keywords: phase transformation, residual stresses, optimization, thermomechanical processes

Abstract

Numerical optimization method of local temperature curing for axis-symmetric shells made of titanium alloy based on Huke-Jives and finite element and method is developed. The phenomena of polymorphic transition during temperature changing is taken into account.

References
  1. Burak, Ya. I., Grigolyuk, E. I,. Podstrigach, Ya. S. (1970). O primenenii metodov variatsionnogo ischisleniya k resheniyu zadach ob optimalnom nagreve tonkikh obolochek. V kn.: Tr. VII Vsesoyuz. konf. po teorii obolochek i plastin, 100-108.
  2. Belenov, F. S. (1952). Kinetika zakalki i opredeleniye vremennikh zakalochnykh napryazheniy. ZhTF, 22(1), 111-120.
  3. Hachkevych, O. R., Astashkin, V.I. (2003). Matematychne modeliuvannia i analiz termomekhanichnoi povedinky tverdykh til v umovakh fazovykh peretvoren. Prykladni problemy mekhaniky i matematyky, 1, 68-72
  4. Grigolyuk, E. I., Podstrigach, Ya. S., Burak, Ya. I. (1979). Optimizatsiya nagreva obolochek i plastin. Kiyev. Naukova dumka.
  5. Il'in, A. A., Kollerov, M. Yu., Zasypkin, V. V., Majstrov, V. I. (1986). Obyemnye izmeneniya, proiskhodyashchie v (alfa-beta) titanovyh splavah pri polimorfnom prevrashchenii. Metallovedenie i termicheskaya obrabotka, 1, 52-55.
  6. Il'in, A.A. (1994). Mekhanizm i kinetika fazovyh i strukturnyh prevrashchenij v titanovyh splavah. M.: Nauka.
  7. Zajffart, P., Kasatkin, O. G. (2002). Raschetnye modeli dlya ocenki mekhanicheskih svojstv metalla ZTV pri svarke nizkolegironannyh stalej. Mikrostruktura i svojstva, 2 103-106.
  8. Zenkevich, O., Morgan, K. (1986). Konechnye elementy i approksimaciya. Moskva: Mir.
  9. Kovalenko, A. D. (1970). Osnovy termouprugosti. Kiev: Nauk. dumka.
  10. Lomakin, V. A. (1970). Statisticheskie zadachi mekhaniki tverdyh deformiruemyh tel M.: Nauka.
  11. Saharova, A .S., Al'tenbaha, I. (Ed.). (1982). Metod konechnyh elementov v mekhanike tverdyh tel. Kiev: Vishcha shkola.
  12. Podstrigach, Ya. S., Goryacheva, Z. I., Burak, Ya. I., Besedina, L. P., Kozakova, L. A., Kanygin, V. A. (1970). O vliyanii profilya temperaturnogo polya na relaksaciyu ostatochnyh napryazhenij pri lokal'nom nagreve kol'cevyh svarnyh shvov. Fiz.-him. mekhanika materialov, 1, 42-45.
  13. Podstrigach, Ya. S., Lomakin, V. A., Kolyano, Yu. M. (1984). Termouprugost' tel neodnorodnoj struktury. M.: Nauka.
  14. Kikoin, I. K. (Ed.). (1976). Tablicy fizicheskih velichin. M. Atomizdat.
  15. Monkawa, M., Nagaki, S., Inine, T. (1980). Analyses of structural and stress changes during quenching and low-temperature-temping of steels. The Journal of Society Material Science, 29(327), 1173-1179.
  16. Budz, S., Astashkin, W., Budz, I., Chupyk, I. (1998). Optimization of local heating for a spherical shell made of titanium alloy BT-23. Archives of mechanics, 50(1), 113-126.
  17. Hachkevych, A., Drobenko, B., Kournyts’kyi, T. (2007). A mathematical simulation of high temperature induction heating of electroconductive solids. International Journal of Heat and Mass Transfer, 50, 616 –624.
    DOI https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.013
  18. Zienkiewicz, O. C., Taylor, R. L. (2000). Finite Element Method: V. 1. The Basis. London: Butterworth Heinemann.
  19. Zienkiewicz, O. C., Wood, W. L., Nine, N. W. (1984). A unified set of single step algorithm. Part 1: General formulation and applications. Int. J. Numer. Meth. Eng., 20, 1529–1552.
    DOI https://doi.org/10.1002/nme.1620200814
  20. Koval', Yu. N., Lobodyuk, V. A. (2010). Deformacionnye i relaksacionnye yavleniya pri prevrashcheniyah martensitnogo tipa. Kiev «Naukova dumka».
  21. Himmel'blau. (1975). Prikladnoe nelinejnoe programmirovanie. M.: Mir.
  22. Budz, S., Hachkevych, O., Hachkevych, M., Trishch, B., Kasperskyi, Z. (2002). Metodyka rozrakhunku rezhymiv hartuvannia sklianykh elementiv mashyn i konstruktsii. Mashynoznavstvo, 2(56), 3-6.
Published
2018-11-06
How to Cite
Hachkevych, O., Drobenko, B., Astashkin, V., Budz, S., Budz, I., & Chupyk, I. (2018). Modelling of phase transition and residual stresses in construction elements subjected to thermal loading. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (26), 17-30. https://doi.org/10.15407/fmmit2017.26.017