Simulation emergency landing of quadrocopter

Fìz.-mat. model. ìnf. tehnol. 2017, 26:7-16

  • Bogdan Blahitko Lviv Ivan Franko National University
  • Yuriyi Mochulsky Lviv Ivan Franko National University
  • Ihor Zaiachuk Center of Mathematical Modelling of IAPMM
Keywords: unmanned quadrocopter, altimeter, 3-axis gyroscope, 3-axis accelerometer, 3-axis magnetometer, control

Abstract

The necessity of analyzing and modeling process of the emergency landing unmanned quadrocopter is described. Through mathematical modeling the basic features of landing unmanned quadrocopter are considered. The methods of safe landing of an unmanned quadrocopter in case of failure of one of four pairs of motor-screw are proposed. The basis of the proposed methods is to use a parachuting effect. Parachuting achieved by forced off the power of the motor, which is located at the opposite end of the same yoke as faulty motor As a result, quadrocopter vertical speed at the time of landing is reduced significantly and is approaching a relatively safe value.

References
  1. Hoffmann, G. M., Waslander, S. L., Tomlin, C. J., & Huang, H. (Eds.). (2009). Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering. IEEE International Conference on Robotics and Automation, 3277-3282.
    DOI https://doi.org/10.1109/ROBOT.2009.5152561
  2. Bristeau, P.-J., Martin, A. P., Petit, N., & Wissiere, D. (Eds.). (2008). Experimental autonomous flight of a small-scaled helicopter using accurate dynamics model and low-cost sensors. Proceeding of the 17th Word Congress The International Federation of Automatic Control, Seoul Korea, 14642-14650.
    DOI https://doi.org/10.3182/20080706-5-KR-1001.02480
  3. Salaun, E., & Nartin, P. (Eds.). (2010). The True Role of Accelerometer Feedback in Quadrotor Control. IEEE International Conference on Robotics and Automation, Anchorage, 1623-1629.
    DOI https://doi.org/10.1109/ROBOT.2010.5509980
  4. Sampaio, R. C. B., Bounabdallah, S., de Perrot, V., Siegwart, R., & Becker, M. (Eds.). (2012). In-Flight Collision Avoidance Controller Based Only on OS4 Embedded Sensors. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34(3), 294-107.
    DOI http://dx.doi.org/10.1590/S1678-58782012000300010
  5. Zaiachuk, I., Mochulskyi, Yu., & Blahitko, B. (Eds.). (2015). Matematychne modeliuvannia vplyvu osoblyvostei sensoriv na protses poliotu bezpilotnoho kvadrokoptera. Fiz.-mat. modeliuvannia ta inform. tekhnolohii, 21, 22-29.
  6. Zaiachuk, I., Kit, L., Mochulskyi, Yu., & Blahitko, B. (Eds.). (2013). Modeliuvannia protsesu stabilizatsii ta kerovanosti bezpilotnoho kvadrokoptera u polioti. Fiz.-mat. modeliuvannia ta inform. tekhnolohii, 18, 21-31.
  7. Zaiachuk, I., Mochulskyi, Yu., & Blahitko, B. (Eds.). (2016). Modeliuvannia protsesu zletu ta pryzemlennia bezpilotnoho kvadrokoptera z pokhyloi poverkhni v avtomatychnomu rezhymi poliotu. Fiz.-mat. modeliuvannia ta inform. tekhnolohii, 24, 7-13.
  8. Mochulskyi, Yu. (2004). Matlab u fizychnykh doslidzhenniakh: navch. - metod. posib. Lviv: VTs LNU im. Ivana Franka.
Published
2018-10-11
How to Cite
Blahitko, B., Mochulsky, Y., & Zaiachuk, I. (2018). Simulation emergency landing of quadrocopter. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (26), 7-16. https://doi.org/10.15407/fmmit2017.26.007